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ABSTRACT 

?%e geomeiricaiiy noniinear dq'brmaiion response OJ~ initiaiiy j7at unsymmeiric cross-piy iaminaies 
subjected to an inplane compressive load and two sets of boundary conditions is studied. Stability of 
the deformations is considered. At issue is whether or not the plate remains flat with increased com- 
pressive loading, and whether it buckles. A semi-injhite unsymmetric cross-ply laminate is used to 
show the combined effects of geometric nonlinearities and bending-stretch coupling. Finite element 
results forf;nite laminates are then presented, and it is shown that to a large degree the boundary con- 
ditions control the character of the deformation response. It appears that clamped boundary condi- 
tions support buckling behavior, in the classic sense of bifurcation, whereas simply-supported 
conditions do not. 
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INTRODUCTION 

Throughout the development of composite materials and structures, there has been minimal interest 
in unsymmetric laminates. This lack of interest stems fiom the fact that with typical elevated tempera- 

cooled fiom the elevated cure temperature. The warpage is seen as a detriment. Additionally, when 
cooled there can often be multiple warped configurations. The laminate can be changed fiom one con- 
figuration to another by a simple s~p-through action. This behavior is due to the fact that the warping 
leads to out-of-plane displacements that are many times the laminate thickness, and therefore, geomet- 
ric nonlinearities are important. Nonlinear problems can often lead to multiple solutions, and an 
unsymmetric laminate is an example of this characteristic. Hyer [l-31, Hamamoto and Hyer [4], and 
Dan0 and Hyer [5] have explained the multiple-configuration behavior and the fact that stability of the 
cooled configuration is an important issue. Dan0 and Hyer [6,7] have also studied the forces necessary 
to change the cooled laminate from one configuration to another. The existence of multiple configura- 
tions presents an uncertainty with unsymmetric laminates that is also considered a detriment. 
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Recently, to eliminate the need for an elevated temperature cure condition, and to provide increased 
flexibility with manufacturing, there has been an interest in using electron beams to cure epoxy matrix 
composites. Of course, epoxy resins have to be formulated for this form of curing, and though there is 
some degree of temperature rise with the electron beam approach, there is the potential for fabricating 
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flat unsymmetric laminates. A flat unsymmetric laminate, or a laminate where the shape can be con- 
trolled by a tool plate as opposed to cooling effects, has significant potential for tailoring applications 
because of the inherent elastic coupling between inplane and out-of-plane effects. Specifically, the 
existence of elements of the B matrix provides the opportunity to tailor structural response in ways that 
are not possible with conventional unsymmetric laminates. Compared to the volumes of literature on 
the behavior of symmetric laminates to all varieties of loading, there is little literature for unsymmetric 
laminates. One important response that has been studied for unsymmetric laminates is buckling. How- 
ever, Quta and Leissa [8] claim that much of this work is in error because the studies assume that an 
unsymmetric laminate remains flat under inplane compression, then buckles. With bending-stretching 
coupling present, an unsymmetric laminate will not generally remain flat when compressed inplane, 
and whether or not it actually buckles, in the classic sense of bifurcation, is open to debate. Leissa [9] 
argued that a flat general unsymmetric laminate will remain flat under inplane loading only if all four 
edges are clamped. For antisymmetric angle ply laminates, the four edges need only be simply sup- 
ported. The key to the required support conditions lies with the moments needed at the edge to counter 
the moments produced by the inplane loads through the B matrix. Quta and Leissa [8] studied the geo- 
metrically linear response of four types of unsymmetric laminates subjected to uniform and linearly- 
varying inplane loads, including uniaxial, biaxial, and inplane shear loads. Twelve sets of boundary 
conditions were considered and the out-of-plane deflection, specifically the presence or lack of out-of- 

used, Quta and Leissa [8] confirmed the earlier assertions of Leissa [9]. 
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The present work is an extension of the work of Quta and Leissa [8]. The paper considers only 
uniaxial compressive loading, only cross-ply laminates, and fewer boundary conditions. However, 
geometric nonlinearities are included and stability is studied. The following section is a brief tutorial, 
based on a semi-infinite laminate, that demonstrates the importance of including geometric nonlineari- 
ties when studying unsymmetric laminates. The section following that then describes the specific prob- 
lem of interest, namely, a laminate with finite dimensions. Since the commercial finite-element code 
ABAQUS [lo] is used, finite element considerations are discussed. 

A ONE-DIMENSIONAL PROBLEM 

To demonstrate the importance of geometric nonlinearities, consider, as in fig. 1, an initially flat 
unsymmetric cross-ply laminate, semi-infinite in the y-direction, and loaded by a uniform inplane 
applied load in the x-direction, I@, at the boundary x=+U2. To study the response of this plate, simple 

ment relations. Since the plate is semi-infinite in the y-direction, the partial derivative with respect to y 
of most variables is zero. As a further simplification, it will be assumed that the displacement of the 
geometric midplane in the y-direction, v, is zero. As a result of these assumptions, the governing partial 
differential equations reduce to a rather simple set of ordinary differential equations, which can be 
solved in closed form. To complete the problem, the inplane displacement, u, at r-U2 is restrained to 
be zero, and the out-of-plane displacement, w, at both boundaries is restrained to be zero. For simple 
support conditions Mx = 0 at both boundaries, and for a clamped conditions dwldr = 0 at both bound- 
aries. With the simplifjmg assumptions, the three goveming equilibrium equations reduce to 
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and the constitutive equations become 
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Figure 1 Geometry and nomenclature for semi-infinite laminate 

N, = A l l ~ + - ( - ~ ) - B l l -  1 dw d2W M, = Bll(-+-(-T)-Dll- du 1 dw 
dx 2 dx dx2 dx 2 dx dx2 

Of course, by the first equilibrium equation and the boundary condition at x=+L/2, N,(x) = lV+ for all x. 
If it assumed that the plate response is symmetric with respect to the x=O location, then the out-of- 
plane solution to the above problem is 

/ K \  ii f, 
w(x) = A ,  +~,cosh [ JExJ  with Dfl = Dll(l --) (3) 

D fl A l l D l l  

where the reduced bending stifiess Df, is defined. For simple supports, and positive and negative 

values of&, respectively, the solutions for w(x) become 

where the non-dimensional loading parameter h has been introduced. The non-dimensional out-of- 
plane displacement at the center of the plate, w(O), can be defined as 

A = w ( O ) / e )  



. 
Figure 2 illustrates the relation between the non-dimensionalized out-of-plane deflection at the cen- 

ter of the plate and the loading parameter. The geometrically linear solution for the deflection of the 
center of the plate, 

(6)  
h 
2 

A = __ 
is also shown on the figure. It can be seen that when the applied load is tensile, the deflection predicted 
by the geometrically nonlinear solution is less, in magnitude, than the linear solution. When the 
applied load is compressive, the deflection predicted by the nonlinear solution is greater than the linear 
prediction. This occuts because as the load increases in tension, the coupling of the inplane load with 
the out-of-plane deflections through geometric nonlinearities, a coupling which tends to flatten the 
plate, overpowers the coupling of the inplane load and out-of-plane deflections due to material effects, 
i.e., the BII term, a coupling which is linear and causes the plate to deflect out-of-plane. When the 
applied load is compressive, the two coupling effects are additive, and the deflection is more than just 
the linear material coupling effect alone. Thus, for this simply-supported case, the plate does not 
remain flat when subjected to an inplane loading. For compressive loads, the deflection becomes 

asymptotically large at & = n / 2 .  
For clamped boundaries, an interesting situation arises, namely, the application of the boundary con- 

only solution is for the plate to remain flat. If the loading parameter represents a compressive load, 
then there are nonzero deflection solutions, with undetermined amplitude, if 

(7) 
This represents a classic bifurcation problem, and provides an example of bifurcation of an initially flat 
unsyrmnetric laminate subjected to inplane compression. Though Leissa [9] did not address semi-infi- 
nite plates, the contrast here between the simple-support and clamped boundary conditions are in line 
with those findings. 
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Figure 2 Out-of-plane deflection behavior for a simply-supported semi-infinite laminate 



PROBLEM DESCIPTION AND ANALYSIS DETAILS FOR A FINITE LAMINATE 

To study finite plates, rectangular laminates of dimension L by W shown in fig. 3 will be considered. 
The long dimensions of the plate are referred to as the sides and the short dimensions the ends. The 
structural x-y-z and principal material 1-2-3 coordinate systems, and the displacements and rotations, 
as defined in ABAQUS, are shown. Interest here is in the compressive loading and that is applied by 
displacing the right end of the plate a known amount U to shorten the plate. The associated load is 
denoted as P. Such a loading can be produced in the laboratory, and since it makes sense to begin any 
experimental investigation of the deformation response of unsymmetric laminates by considering 
small-scale laboratory size specimens, the plates considered are 0.508-m long by 0.406-m wide (20.0 
in. by 16.0 in.). The plates are assumed to be constructed of eight-layers of graphite-epoxy and mea- 
sure l .01&mm (0.04 in.) thick. The properties of a layer are assumed to be 

E1=130.0 GPa (18.85 Msi); E24.70 GPa (1.407 Msi); G12=5.00 GPa (0.725 Msi) 
v12=0.300; h4.1270 IIUII (0.005 in) 

Out-of-plane displacement vs. endshortening results will be presented for the three locations labeled I, 
11, and 1.1 in fig. 3. Locations I and 11. are quarter locations, while location 11 is at the center. Plots of 
the defonned geometry wiii ‘be presented for specific endshortening ieveis. Additionaiiy, the reiation- 
ship between endshortening and the associated load P will be presented. Two combinations of bound- 
ary conditions will be prescribed along the ends and sides, namely, simply supported on all four 
boundaries, SS-SS, and clamped on all four boundaries, CGCL. To provide some commonality with 
the semi-infinite plate discussed in the previous section, the plates are constrained so that 1-0 along 
the sides. Practically speaking, this condition has merit because components of a structure are gener- 
ally joined to other components, resulting in some degree of constraint along the edges. Rather than 
look at a range of elastic restraints, adding another variable to the problem, the 1-0 condition repre- 
sents one end of the range. This issue is important because, through Poisson effects, inplane compres- 
sion in the x-direction can cause the plate to expand in the y-direction. With I-0 along the sides, 
Poisson expansion is restricted by an inplane compression force in the y-direction. With the bending- 
stretching coupling present in an unsymmetric laminate, this inplane force, along with the applied 
inplane displacement, are factors. 
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Figure 3 Description and nomenclature of plate with finite geometry 
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Nine-noded, two-dimensional, geometrically nonlinear, S9M shell elements in the ABAQUS finite- 
element code are used to model the plates. The plates are compressed statically by increasing the end- 
shortening using very small increments of U. At each value of U the static stability of the plate is 
checked by examining the eigenvalues of the tangent stiffness matrix, a zero or negative eigenvalue 
indicating a statically unstable laminate configuration. At the value of U where the static solution 
ceases to be stable, some iteration is then done to adjust U so that the value of U just at the onset of the 
instability can be closely determined. For a value of U slightly greater than this onset value, and for 
this value of U held fixed, a dynamic analysis, using a small amount of damping, is then initiated. For 
a statically unstable condition, simply initiating a dynamic analysis should be enough to allow the plate 
to begin to move toward a stable equilibrium configuration. However, for some unstable conditions, 
this requires integrating forward in time for long periods, as the plate may move slowly from its unsta- 
ble configuration. Accordingly, as an alternative to simply initiating the dynamic analysis, the plate is 
given a very small pressure pulse perpendicular to the plate at time zero of the dynamic analysis. The 
dynamic analysis is carried out for small pressure pulses in both the -k and -z directions (see fig. 3). 
For all cases studied here, if pressure pulses are used, the plate moves dynamically to the same config- 
uration independent of the sign of the pressure pulse. As the plate motion is decaying around this 
unique configuration, a new static analysis is initiated using a decayed dynamic configuration as a 
starting point. The static analysis then converges within a reasonable number of iterations to what is 
interpreted io be the siaticaiiy siabie Configuration for that vaiue of endsinortening. ihis numericai sce- 
nario corresponds to a displacement-controlled compression test in the laboratory. Ten elements in 
each direction, for a total of 100 elements, are used to model the plates. To test the robustness of this 
mesh, for several specific test cases the mesh was doubled in each direction, for a total of 400 ele- 
ments. All aspects of plate response were identical for the two meshes, including the dynamic stability 
analysis. Of course, the dynamic stability analysis took considerably more time with 400 elements than 
with 100 elements, so the 100 element mesh was used. 

NUMERICAL RESULTS 

Figure 4 presents the normalized load vs. endshortening relation, the normalized out-of-plane dis- 
placement vs. endshortening relations, and deformed plate configurations at selected values of end- 
shortening for a SS-SS [0,/90& unsymmetric cross-ply laminate as the endshortening increases from 
zero to a normalized value of 10. The normalizing factor Ucr is the classic buckling value of endshort- 
ening for a SS-SS [o2/90Js symmetric cross-ply laminate. The term ‘classic’ implies that the bound- 
%res are free to move inplane (&) and are only constrained from out-of-plane deformation (w=O). 
This normalizing factor was chosen simply because it is easily calculated. Strain levels in the plate 
were not particularly high. The normalizing factor Pcr used to normalize P is the load associated with 
Ucr. 

The three parts of fig. 4 for the out-of-plane displacements at locations I, 11, and I11 show that as the 
endshortening is increased from zero, point A, the plate deforms out of plane a significant amount in a 
half-wave configuration. At point By the load vs. endshortening relation decreases slope slightly. As 
the endshortening is increased, the plate configuration begins to change. When the endshortening 
reaches the level of point C, the plate appears to have two half waves in the loading direction. A close 
look at the out-of-plane displacements at location 11, however, reveals that the displacement is not 
quite zero in the center of the plate. At point C the plate becomes unstable, and a dynamic analysis is 
used to affect the transition to point D. At point D the deformed configuration looks like that at point 
C, but the out-of-plane displacement at location II is positive, while the magnitudes of the out-of-plane 
displacements at locations I and III have decreased relative to point C. A M e r  increase in endshort- 
ening to point E does not produce any configuration changes. It is clear there is nothing that resembles 
bifurcation, or buckling, behavior in fig. 4. Rather, the plate makes a smooth continuous shape change 



as the endshortening increases from A to B to C. The transition from point C to point D could be 
referred to as a s e c o n k  instability. However, since there is not a primary instability, i.e., buckling, 
the nomenclature is not quite applicable. None-the-less, the transition from C to D is due to an instabil- 
ity. 

If instead of enforcing simply-support boundary conditions on all four sides, clamped conditions are 
enforced, the response illustrated in fig. 5 occurs. As the endshortening is increased from zero, the 
plate appears to remain flat. According to Leissa [8], this should be the case, though the finite-element 
results here indicate there are very small out-of-plane displacements. As they are many orders of mag- 
nitude less than the out-of-plane displacements along path AB in fig. 4, these are felt to be a result of 
numerical round-off in the finte-element analysis. Increasing the endshortening past point B results in 
a statically unstable condition. The dynamic analysis leads to a statically stable equilibrium configura- 
tion whereby the plate is deformed out of plane in what appears to be a two half-wave configuration, as 
shown by the inset of the deformed geometry of point C. However, the configuration is not exactly a 
two half-wave one, rather there is a small out-of-plane displacement at the center of the plate, location 
IT, as seen in the upper portion of fig. 5. With increasing endshortening past point B, the displacement 
at location IT is at first negative, then positive, though it remains small. At locations I and L17 the dis- 
placements are much larger and have opposite signs. This pseudo-half-wave configuration remains 
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From the results presented, it can be concluded that bifurcation behavior is possible for flat unsym- 
metric cross-ply laminates with four clamped boundaries. Simple supports do not lead to bifurcation 
behavior. However, there appears to be an instability in the response at high levels of endshortening. 
Of course, neither the changing configuration with increasing endshortening for the simply-supported 
case nor the instability would be predicted by a geometrically linear analysis. For the clamped case, a 
linear analysis would predict the laminate would remain flat (to within the numerical tolerance of zero) 
for all endshortening levels. 
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